Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Weather and Forecasting ; 38(4):591-609, 2023.
Article in English | ProQuest Central | ID: covidwho-2306472

ABSTRACT

The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future.Significance StatementDuring the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well.

2.
Atmosphere ; 14(2):234, 2023.
Article in English | ProQuest Central | ID: covidwho-2260661

ABSTRACT

We updated the anthropogenic emissions inventory in NOAA's operational Global Ensemble Forecast for Aerosols (GEFS-Aerosols) to improve the model's prediction of aerosol optical depth (AOD). We used a methodology to quickly update the pivotal global anthropogenic sulfur dioxide (SO2) emissions using a speciated AOD bias-scaling method. The AOD bias-scaling method is based on the latest model predictions compared to NASA's Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2). The model bias was subsequently applied to the CEDS 2019 SO2 emissions for adjustment. The monthly mean GEFS-Aerosols AOD predictions were evaluated against a suite of satellite observations (e.g., MISR, VIIRS, and MODIS), ground-based AERONET observations, and the International Cooperative for Aerosol Prediction (ICAP) ensemble results. The results show that transitioning from CEDS 2014 to CEDS 2019 emissions data led to a significant improvement in the operational GEFS-Aerosols model performance, and applying the bias-scaled SO2 emissions could further improve global AOD distributions. The biases of the simulated AODs against the observed AODs varied with observation type and seasons by a factor of 3~13 and 2~10, respectively. The global AOD distributions showed that the differences in the simulations against ICAP, MISR, VIIRS, and MODIS were the largest in March–May (MAM) and the smallest in December–February (DJF). When evaluating against the ground-truth AERONET data, the bias-scaling methods improved the global seasonal correlation (r), Index of Agreement (IOA), and mean biases, except for the MAM season, when the negative regional biases were exacerbated compared to the positive regional biases. The effect of bias-scaling had the most beneficial impact on model performance in the regions dominated by anthropogenic emissions, such as East Asia. However, it showed less improvement in other areas impacted by the greater relative transport of natural emissions sources, such as India. The accuracies of the reference observation or assimilation data for the adjusted inputs and the model physics for outputs, and the selection of regions with less seasonal emissions of natural aerosols determine the success of the bias-scaling methods. A companion study on emission scaling of anthropogenic absorbing aerosols needs further improved aerosol prediction.

3.
2022 IEEE International Conference on Big Data, Big Data 2022 ; : 1594-1603, 2022.
Article in English | Scopus | ID: covidwho-2248082

ABSTRACT

Real-time forecasting of non-stationary time series is a challenging problem, especially when the time series evolves rapidly. For such cases, it has been observed that ensemble models consisting of a diverse set of model classes can perform consistently better than individual models. In order to account for the nonstationarity of the data and the lack of availability of training examples, the models are retrained in real-time using the most recent observed data samples. Motivated by the robust performance properties of ensemble models, we developed a Bayesian model averaging ensemble technique consisting of statistical, deep learning, and compartmental models for fore-casting epidemiological signals, specifically, COVID-19 signals. We observed the epidemic dynamics go through several phases (waves). In our ensemble model, we observed that different model classes performed differently during the various phases. Armed with this understanding, in this paper, we propose a modification to the ensembling method to employ this phase information and use different weighting schemes for each phase to produce improved forecasts. However, predicting the phases of such time series is a significant challenge, especially when behavioral and immunological adaptations govern the evolution of the time series. We explore multiple datasets that can serve as leading indicators of trend changes and employ transfer entropy techniques to capture the relevant indicator. We propose a phase prediction algorithm to estimate the phases using the leading indicators. Using the knowledge of the estimated phase, we selectively sample the training data from similar phases. We evaluate our proposed methodology on our currently deployed COVID-19 forecasting model and the COVID-19 ForecastHub models. The overall performance of the proposed model is consistent across the pandemic. More importantly, it is ranked second during two critical rapid growth phases in cases, regimes where the performance of most models from the ForecastHub dropped significantly. © 2022 IEEE.

4.
Expert Syst Appl ; 212: 118746, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2007692

ABSTRACT

During the global fight against the novel coronavirus pneumonia (COVID-19) epidemic, accurate outbreak trend forecasting has become vital for outbreak prevention and control. Effective COVID-19 outbreak trend prediction remains a complex and challenging issue owing to the significant fluctuations in the COVID-19 data series. Most previous studies have limitations only using individual forecasting methods for outbreak modeling, ignoring the combination of the advantages of different prediction methods, which may lead to insufficient results. Therefore, this paper develops a novel ensemble paradigm based on multiple neural networks and a novel heuristic optimization algorithm. First, a new hybrid sine cosine algorithm-whale optimization algorithm (SCWOA) is exercised on 15 benchmark tests. Second, four neural networks are used as predictors for the COVID-19 outbreak forecasting. Each predictor is given a weight, and the proposed SCWOA is used to optimize the best matching weights of the ensemble model. The daily COVID-19 series collected from three of the most-affected countries were taken as the test cases. The experimental results demonstrate that different neural network models have different performances in various complex epidemic prediction scenarios. The SCWOA-based ensemble model can outperform all comparable models with its high accuracy and robustness.

5.
Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice ; 42(6):1678-1693, 2022.
Article in Chinese | Scopus | ID: covidwho-1924681

ABSTRACT

Since December 2019, COVID-19 epidemic is continuing to spread globally. It not only jeopardizing the lives and health of people around the world seriously and putting a severe test on the public medical and health system, but also causes a huge impact on economic and trade activities and has a deep influence on the international community. In order to help researchers and policy makers understand the mechanism of virus transmission and adopt reasonable anti-epidemic policies to inhibit the further spread of the virus, some studies have adopted mathematical prediction models to simulate the spread of the virus and the development of the epidemic. However, the existing research has certain limitations, such as single method selection, excessive reliance on model parameters selection, and virus transmission and policy adjustments caused time variability of data. To solve the above problems, this paper proposes a comprehensive ensemble forecasting framework, which bases on six single prediction models, including time-varying Jackknife model averaging (TVJMA), time-varying parameters (TVP), time-varying parameter SIR (vSIR), logistic regression (LR), polynomial regression (PNR), autoregressive moving average (ARMA). The proposed method is used to predict the cumulative number of confirmed cases in the 6 most severely affected countries in different regions. Empirical results show that for a single prediction method, the TVJMA method outperforms the other five methods;the comprehensive ensemble forecasting method is significantly better than any single method in most cases, especially, the multi-model combined forecasting method based on error correction weights improves the prediction accuracy significantly. For different prediction steps, the comprehensive ensemble forecasting method is robust. © 2022, Editorial Board of Journal of Systems Engineering Society of China. All right reserved.

6.
IEEE Access ; 8: 175244-175264, 2020.
Article in English | MEDLINE | ID: covidwho-867973

ABSTRACT

Since the beginning of 2020, the outbreak of a new strain of Coronavirus has caused hundreds of thousands of deaths and put under heavy pressure the world's most advanced healthcare systems. In order to slow down the spread of the disease, known as COVID-19, and reduce the stress on healthcare structures and intensive care units, many governments have taken drastic and unprecedented measures, such as closure of schools, shops and entire industries, and enforced drastic social distancing regulations, including local and national lockdowns. To effectively address such pandemics in a systematic and informed manner in the future, it is of fundamental importance to develop mathematical models and algorithms to predict the evolution of the spread of the disease to support policy and decision making at the governmental level. There is a strong literature describing the application of Bayesian sequential and adaptive dynamic estimation to surveillance (tracking and prediction) of objects such as missiles and ships; and in this article, we transfer some of its key lessons to epidemiology. We show that we can reliably estimate and forecast the evolution of the infections from daily - and possibly uncertain - publicly available information provided by authorities, e.g., daily numbers of infected and recovered individuals. The proposed method is able to estimate infection and recovery parameters, and to track and predict the epidemiological curve with good accuracy when applied to real data from Lombardia region in Italy, and from the USA. In these scenarios, the mean absolute percentage error computed after the lockdown is on average below 5% when the forecast is at 7 days, and below 10% when the forecast horizon is 14 days.

SELECTION OF CITATIONS
SEARCH DETAIL